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1. INTRODUCTION 

THE FLOW and heat transfer problem due to a stretching 
boundary is important in extrusion processes. Tsou et al. [I] 
and Crane [2] among others have studied the steady flow 
problem caused by the two-dimensional stretching of a flat 
surface. Recently, a number of authors [3-71 have studied 
various aspects of this problem. More recently, Wang [8] 
considered the steady three-dimensional flow due to a stretch- 
ing flat plate, where only the velocity field was studied. 

The aim of the present analysis (which is an extension of 
Wang [S]) is to study the flow, heat and species transport 
problem due to the unsteady, three-dimensional flow caused 
by the stretching of a flat surface in two lateral directions. 
A self-similar solution has been obtained when the flat 
surface is stretched in a particular manner. The resulting 
nonlinear ordinary differential equations have been solved 
numerically [9]. 

2. GOVERNING EQUATIONS 

We consider a highly elastic membrane immersed in a 
viscous fluid which is continuously stretched in the x and y 
directions and which also varies with time (see Fig. 1). The 
fluid velocities on the surface (z = 0) are given by : 

u, =ax(l-ii*)-‘, 0, =6y(l-It*))‘, t* =at. (1) 

The fluid has no lateral motions at z + co. Also, it is assumed 
to have constant properties, and both wall and free stream 
are maintained at uniform temperature and concentration. 
The viscous dissipation term has been neglected. Here, we 
can confine our analysis to species diffusion processes in 
which the diffusion-thermal and thermo-diffusion effects can 
be neglected. The interfacial velocity at the wall w, due to 
mass diffusion process has also been neglected in the analy- 
sis Under the foregoing assumptions, the unsteady boun- 
dary-layer equations governing the flow, and heat and 
diffusion transport can be expressed as : 

u,+v,+w2 = 0 (2) 
ui + MU, + vu, + wuz = vu,, (3) 

0, + UD, + vt’, + WV, = vu,, (4) 

T,+uT,+rZ,+wT, = aTi, (5) 

C, + UC, + UC, + MC, = DC,:. (6) 

1 To whom correspondence should be addressed 

The initial and boundary conditions are given by 

u(x, y, z, 0) = a,, r(s,y, z, 0) = u,, w(x,,v, z, 0) = w, 

T(.x, Y, a, 0) = T,> C(x,):z,O) = C, 

(7a) 

u(x, Y, 0, t) = 4, aky,O, t) = VW, w(x,y,O,t) = 0 

wG_!J,O,f) = TW> C(X,Y,O, 4 = G I 

(7b) 

uky,co,t) = t+Gy,03,t) = 0, TkY, m,t) = rrn 

C(x,y,co,t) = c,. I 

(7c) 

We apply the following transformations 

tj = (a/v)“‘(l --it*))“2z, It* < 1, c = b/a 

u = ax(l -If*)- ‘f’(q), v = ay(1 -W-Is’(q) 
(84 

w = -(av)“‘(l -l.t*)-“‘(,f+s) Pr = v/cc, SC = v/D 

(T- TZTw- Tr) = g(v)> (k)/(Cw - C,) = G(v) 

(8b) 

to equations (2E(6) and we find that (2) is satisfied identically 
and equations (3t(6) reduce to 

f”‘+ (f+s)f”-f”-E”(f’+ qf”/2) = 0 (9) 

3”’ + (f + s)s” - s’2 - ,?(s’ + $‘/2) = 0 (10) 

Pr ‘g” + (f+ s)g’ - lqg’/2 = 0 (11) 

Sc-‘G”+(f+s)G’-lqG’/2 = 0. (12) 

The boundary conditions reduce to 

,f=s=O, f’=g=G=l, s’=c atq=O 

,f’=s’=g=G=O asn-ta. > 
(13) 

z 
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Y 

FIG. 1. Coordinate system. 
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C. D 

NOMENCLATURE 

velocity gradients in the x and y directions, T dimensional temperature 
respectively 11, n, w velocity components in the x, y, z directions, 
ratio of the velocity gradients respectively 
species concentration and binary diffusion X,Y,Z principal, transverse and normal directions, 
coefficients, respectively respectively. 
skin friction coefficients in the x and y 
directions, respectively 
dimensionless streamfunctions 
dimensionless velocity components in the x 
and y directions, respectively 
skin-friction parameters in the x and y 
directions, respectively 
dimensionless temperature and 
concentration, respectively 
heat transfer and mass flux parameters, 
respectively 
thermal conductivity and mass flux of the 

Greek symbols 

‘% rl thermal diffusivity and similarity variable, 
respectively 

1 parameter characterizing the unsteadiness in 
the wall velocity 

PL,“>P coefficient of viscosity, kinematic viscosity 
and density, respectively 

r,, ry shear stresses in the x and y directions, 
respectively. 

diffusing species _ 
local Nusselt and Sherwood numbers, 
respectively 

Superscript 
differentiation with respect to II. 

Pr, SC Prandtl and Schmidt numbers, respectively 

4u local heat transfer rate per unit area 
Re,, Re, Reynolds numbers in the x and y directions, 

respectively 
t, t* dimensional and dimensionless times, 

respectively 

Subscripts 
i initial conditions 
t, x, y, z derivatives with respect to t, X, y, Z, 

respectively 

w, al wall and free-stream conditions, respectively. 

cooling 01 conrmuous strips oy arawmg rnrougn a qmescenr 
It may be noted that many industrial processes involve the 

fluid : the drawing of a sheet glass is an example of such a 
process. The properties of the final product depend to a large 

4. r . . 

extent on the rate at which the material is cooled. The velocity 

. . . . ..I 1 

components of the sheet may be taken as proportional to the 
distance and time as in equation (1). 

It may be remarked that for I = 0, equations (9)-(12) 
reduce to those of the steady-state case. However, only the 
velocity fields, i.e. only equations (9) and (10) with 1, = 0 have 
been studied by Wang [S]. It is to be noted that equation (12) 
is the same as (11) if we replace SC by Pr and G by g. The 
boundary conditions are also identical. Here the parameter 
c denotes the nature of the stagnation point and for nodal 
point flows c > 0 (0 < c < 1). Also c = 0 for a two-dimen- 
sional stagnation point and c = 1 for an axisymmetric stag- 
nation point. As most three-dimensional bodies of practical 
interest lie between a cylinder (c = 0) and a sphere (c = l), 
the computations have been carried out for 0 < c < 1. 

The surface skin friction coefficients in the x and y direc- 
tions can be expressed as 

As mentioned earlier, equation (12) is identical to (11). 
Hence the two-point boundary-value problem represented 

3. RESULTS AND DISCUSSION 

by equations (9t_(ll) under the relevant conditions given in 
(13) have been solved numerically [9] on a high speed com- 
puter (CDC CYBER 205). An outline of the method is 
presented in ref. [9] and hence for the sake of brevity it is not 
presented here. The effect of step size An and the edge of 
the boundary layer r~, on the solution has been studied to 
optimize them. The results presented here are independent 
of A? and tlrn at least up to fifth decimal place. The com- 
putations have been carried out for various values of the 
parameters. However, the results have been presented only 
for some representative values of the parameters. 

In order to assess the accuracy of our method, we have 
compared our results (f’:, sk) for I = 0 with those tabulated 
by Wang [8] and found them in excellent agreement, They 
agree up to fourth decimal place. Hence the comparison is 
not shown here. 

The effect of the parameter I characterizing the unsteadi- 
ness on the skin friction and heat transfer (-f G, -sL, -g&) 
is shown in Table 1 and Fig. 2. It is observed that the skin 
friction parameters in the x and y directions (-f’k, -s:) 

cr, = 2t,,/p: = -2(&Z,)) "'f :: 
C, = 2c*s,,/pu~ = -2c”*(Re,)-“‘sk > 

(l4a) 

where 

f XW = -&),, TYw = -&& 

Re, = u,xjv, Re, = v,y/v. 1 
(14’4 

The local heat transfer coefficient in terms of Nusselt number 
is given by 

Nu = xq,/[k(T,- T,)] = -(Re,)“2gk (154 

where 
qw = -kT,. (15b) 

Similarly, the Sherwood number characterizing the mass flux 
of the diffusing species can be written as 

Sh = (x/pD)[m,/(C,, - C,)] = - (Re,)“2g: (16a) 

where 

m, = -pD(CJ,. U6b) 

Table 1. Skin friction, heat transfer and mass diffusion 
parameters for c = 0.5, Pr = 0.7 

-1.00 0.7912 0.2956 0.8053 
-0.75 0.8673 0.3384 0.7585 
-0.50 0.9430 0.3809 0.7068 
-0.25 1.0183 0.4232 0.6477 

0 1.0931 0.4652 0.5758 
0.25 1.1674 0.5059 0.4713 
0.50 1.2407 0.5480 0.3401 
0.75 1.3122 0.5878 0.1849 
1 .oo 1.3814 0.6261 0.0109 

-f:: -s; -Sk 
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1.5O 0.25 o.50c 0.75 1.00 
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FIG. 2. Skin friction and heat transfer parameters 
(-f;, -s:. -g::) for Pr = 0.7. ~ -,/z; ~~~ -s:; 

_,~ -g’ W 

Table 2. Heat transfer and mass diffusion parameters for 
1=c=o.5 

Pr -Sk SC -CL 

0.2 0.1254 1.0 0.2446 
0.7 0.2011 7.0 1.5641 
1.0 0.2446 10.0 2.4769 
7.0 1.5641 50.0 5.9954 

increase as I increases, but the heat transfer -gb decreases, 
This is due to the reduction in the momentum boundary- 
layer thicknesses and increase in the thermal boundary-layer 
thickness. It may be noted that a similar effect has been 
observed by Teipel [lo] for unsteady forced convection flow 
at a three-dimensional stagnation point for a stationary wall. 
The effect of 3, on the mass flux of diffusing species (-C;) is 
similar to that on the heat transfer (-g:), hence not shown 
here. In fact for SC = Pr, gh = G&. 

The effect of the nature of the stagnation point char- 
acterized by the parameter c on the skin friction and heat 
transfer has also been presented in Fig. 2. It is found that the 
skin friction and heat transfer parameters (- f;, -s;, -9:) 
decrease as c decreases. The effect of c is more pronounced 
on -sz and -g& but its effect on -f’k is comparatively 
small. The effect of c on -Gk is similar to that on -g&. 

Table 2 shows the effect of the Prandtl number (Pr) on 
the heat transfer (-9:) and the effect of the Schmidt number 
(SC) on the mass flux of diffusing gases. Pr or SC does not 
affect the skin-friction parameters (-f:, -sg). It is seen that 
the heat transfer (-Sk) increases with Pr because a higher 
Prandtl number fluid has a relatively lower thermal con- 
ductivity which reduces conduction and thereby increases 
the variations. This results in the decrease in the thermal 
boundary-layer thickness and increase in the convective heat 
transfer at the wall. The effect of the Schmidt number (SC) 
on the mass flux of diffusing species (-CL) is similar to that 
of the Prandtl number on the heat transfer (-9;). 

The velocity and temperature profiles (f’, s’, g) for differ- 
ent values of I are shown in Figs. 3-5. These profiles decay 
exponentially as n increases for all values of 1. The velocity 
profiles (f’,~‘) become steeper as A increases, but its effect 
on the temperature profile (g) is just opposite. The reason 
for such a behaviour has been explained earlier while dis- 
cussing the effect of Iz on f:,sXgk. The effect of A. on the 
concentration profile (G) is similar to that on the temperature 

FIG. 3. Velocity profile in the x direction (f’) for c = 0.5. 

FIG. 4. Velocity profile in they direction (s’) for c = 0.5. FIG. 5. Temperature profile (g) for c = 0.5, Pr = 0.7. 
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profile (g). It is also observed that the velocity profiles (f’, s’) 
at any two values of I cross each other towards the edge of 
the boundary layer. A similar trend has been observed by 
Yang [1 l] for the unsteady, two-dimensional, stagnation- 
point flow over a stationary wall. 

4. CONCLUSIONS 

The effects of the unsteadiness in the wall velocities and 
the nature of the stagnation point on the skin friction, heat 
transfer and mass flux of diffusing species are found to be 
appreciable. The Prandtl number and the Schmidt number 
strongly affect the heat transfer and mass flux of diffusing 
species, respectively. The velocity temperature and con- 
centration profiles are observed to decay exponentially. 
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1. INTRODUCTION 

HEATING or evaporation of non-Newtonian solutions by 
means of falling film shell-and-tube heat exchangers is some- 
times practised in the food and polymer processing indus- 
tries. The application of the falling film principle has the 
advantage of short residence time which is most desirable 
for heat-sensitive materials. In short columns and when the 
viscosity of the solution is high, the tilm flow may be laminar 
in nature. Little information, however, is available on the 
heat transfer rate in these liquid films. Murthy and Sarma 
[l] investigated analytically heating in the entrance region of 
an accelerating, non-Newtonian, power-law-model, laminar 
falling film flowing down an inclined plane with constant 
wall temperature. Integral solutions for the boundary-layer 
equations of momentum and energy were obtained in which 
the Nusselt number for the thermally developing and fully 
developed regions can be calculated. Heating with constant 
wall temperature and a fully developed velocity protie 
was also analyzed both theoretically and experimentally 
by Stucheli and Widmer [2] for Newtonian and non- 
Newtonian power-law model falling film on an inclined 
plane. The viscosity was assumed to be temperature depend- 
ent. The objectives of the present research are to show that 
a simple analytical solution can be easily obtained for 
heating or evaporation in the thermal entrance and fully 
developed regions of a non-Newtonian, power-law model 

falling film with the boundary condition of constant wall 
heat flux or constant wall temperature. 

2. THEORY 

A non-Newtonian liquid film of average film thickness, 6, 
is in steady laminar flow down a vertical plane under the 
action of gravity. The liquid flow is characterized by a power- 
law rheological model. The velocity profile of the falling film 
is assumed to be fully developed at the start of the heat 
transfer section. By a balance of shear and gravity forces, 
the dimensionless velocity protile can be derived, with the 
boundary condition of no slip at the wall (y = 0) and zero 
interfacial shear at the gas-liquid interface (y = a), as 

v*(n) = V(q)/U, = l-(l-r7)‘“+‘“” (1) 

where r~ = y/6 and y is the distance measured from the wall 
into the liquid film with x being the coordinate in the flow 
direction. The average velocity and surface velocity can be 
derived as 

U,,/U, = (n + 1)/(2n + 1) (2) 


